
[Krishna, 3(10): October, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[576]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
Literature Survey on Model based Slicing

Sneh Krishna*, Alekh Dwivedi

LNCT, Bhopal, India

Abstracts
Software testing is an activity which aims at evaluating an feature or capability of system and determining that

whether it meets required expectations. One way to ease this program slicing technique is to break down the large

programs into smaller ones and into other is model based slicing that break down the large software architecture model

into smaller models at the early stage of SDLC (Software Development Life Cycle). This is the novel methodology to

extract the sub model from a big model diagrams on the basis of slicing criteria. The proposed procedure used the

concept of model based slicing to slice the sequence diagram to extract the desired lump.This literature survey presents

an overview of Model based slicing, including the various general approaches and techniques used to compute slices.

General Terms: UML Models, Slicing

Keywords: Dependency Graph, Model Based Slicing, Feature Based Slicing, UML/OCL Model Verification,

Model Transformation Verification Through Slicing.

Introduction

Slicing of programs was introduced by [1] as a

technique for the analysis of software, and has also been

used for reverse-engineering and re-factoring of

software. In recent year, due to increase in size and

complexity of software items the importance of

architectural design has been increased. The architecture

of an object-oriented software system defines its high

level design structures and allows an architect to reason

about various properties of the system at higher level of

abstraction. For this, Unified Modeling Language

(UML) is best option and widely used to represent and

construct the architecture of software system with the

help of its various model diagram. UML diagram

describe structural and behavioural aspects of

architecture [2]. Structural models (e.g., class diagrams,

component diagrams, object diagrams) are used to

describe various relation among objects, such as

aggregation, composition generalization/specialization

etc. On the other hand, the behavioural models (e.g.

communication and sequence diagrams, activity

diagram, state diagrams) are used to describe a sequence

of actions, states and their interaction, through which a

use case is realized[3]. Quotes Jianjun [4], a software

testing consultant, said that the first mistake that people

make is thinking that the testing team is responsible for

assuring quality. For better visualization of architecture,

impact analysis and for test case generation the

properties of system architecture with slicing can be

taken into account. For this various ideas, approaches

and slicing techniques are proposed by various

academician’ author and researcher. Second part

provides a brief review of Slicing of UML models and

various techniques and approaches used by the

researches. Third section provides the list of tools used

for model based slicing and last section provides the

conclusion of this literature analysis.

UML Model Slicing
UML Model Slicing is a process of decomposition of

model and extraction to identify relevant model parts

across the user defined slicing criteria. In UML Model

Slicing several types of model relations, and dependency

such as class-class, class-operation, class-object,

operation-operation, object-object, guard condition in

sequence diagram , data flow, control flow, conditional

predicate, etc., need to be taken into account. In this

work, sequence diagram has been taken into account and

various approaches present till date for UML Model

Slicing have been listed.

Methodologies for UML Models Slicing

Using Dependency Relationships

Dependency Graph is an intermediate

representation step by step while slicing UML Models

that can describe the various types of dependencies.

Zhao [4] introduced the concept of architectural slicing

which operated on architectural description of software

system. According to the proposed architectural

description there are three types of dependencies. First

is component-connector dependency where information

flows from port (interface) of a component to role of a

connector. Second type is connector component

http://www.ijesrt.com/

[Krishna, 3(10): October, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[577]

dependency in which information flow is from role of

connector to port of components. Third type of

dependency is additional dependency which can be used

to represent a relation between two ports or roles within

a component. To compute the architectural slice a two

phase algorithm has been proposed that works on SADG

(software architectural dependency graph). First phase

of algorithm is to compute slice 'Sg' over the SADG and

second phase is to compute an architectural slice in

which each element of ‘Sg’ is mapped to equivalent

source code of description. As an extension of his

previous work Zhao [4] introduced Architectural

Information Flow Graph with three type of information

flow arcs: Component-connector, Connector-

component, internal flow arcs to apply the slicing

technique on software architecture precisely.

Fangjun et.al [6] presented a method for slicing

hierarchical automata. The importance of Fangjun

algorithm is its ability to remove the hierarchies and

concurrent states, which are irrelevant to the properties

of the hierarchical automation. The given approach was

based on representing the UML state chart by

hierarchical automation for modelling dynamic aspects

of software.The proposed method reduces the state space

during model checking of UML state chart. The output

slice proposed by technique is Extended Hierarchical

automation instead of UML State chart models.

Maletic et al. [7] developed an approach that comprises

different class relationship to define dependence

relations corresponding to the relations among classes.

Based upon these set of dependency relations they

construct a dependence graph of UML class diagram.

Their proposed models can be used in two important

applications slicing the architecture and measurements

of coupling between component. As their graph

representation has been derived from class diagrams

alone, usefulness is limited to understanding static

aspects of a modelled system.

Sutton et al. [7] proposed the concept of model slicing to

support maintenance of software through querying

understanding, and analyzing large UML models. Kagdi

developed model slices from UML class models. His

approach was to extracts parts of a class diagram in order

to construct sub models from a given model of a system.

However, class models are lacking of explicit

behavioural information and represent only structural

behaviour. For the purpose of model slicing they define

a model 'M' as directed by multi graph for finite set of

elements, their set of relationships, and a function that

maps element to element via a relationship.

Van [8] presents an algorithm for reducing the number

of interference dependencies in state chart by using the

concept of slicing with concurrent state. The proposed

approach considers data dependency from the definition

and use of variables that are common to parallel

executing statements. The core idea of approach is to

know relation between states and transitions of

orthogonal region to improving the degree of refinement

in measurement of interference dependency. He

achieved this by exploiting the internal broadcasting

mechanism and maintaining the state chart’s execution

systematically.

Chae et.al [9] proposed UML metamodel slicer to

manage the complexity of UML metamodels which

addresses to all UML diagram by modularizing

metamodels into small metamodels. The proposed

approach extracts diagram-specific metamodels from

the UML metamodel because the diagram-specific

metamodels consist of a considerable small number of

elements and relationships. The UML Metamodel Slicer

generates a metamodel, 'MMdt' by a given set of key

elements ‘KEdt’. The elements in ‘KEdt’ are used for

identifying the model elements as slicing criteria which

are relevant to the diagram type ‘dt’.

Moha et al.[10] presented an approach for meta-model

pruning algorithm. The proposed pruner takes input

slicing criteria, i.e. operations, classes, etc of the meta-

model to slice the architecture and extract all the

mandatory dependencies between them. The pruner

resulted into an output slice that satisfies all the

structural constraints imposed by the input metamodel.

Jaiprakash et al. [11][12] proposed a technique for

constructing dynamic slices of UML model using the

integrated state based information. In order to achieve

this he proposed an algorithm i.e Architectural Model

Slicing through MDG Traversal (AMSMT) that first

represents a model dependency graph to collect all the

information about dependency at different states of

variables. Researchers proposed an algorithm that

generate the dynamic slices corresponding to any slicing

criteria by traversing the model dependency graph which

hold all the dependency of variables. Such slice can be

used for studying the impact of design changes,

reliability predictions, understanding large architecture

because it holds the object state information. By using

the same algorithm (AMSMT) researchers had

implemented prototype architectural slicing tool called

SSUAM [13] to generate static slices for UML

Architecture models. Later on, in another approach they

proposed a DSUAM algorithm [14] which uses the

http://www.ijesrt.com/

[Krishna, 3(10): October, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[578]

MDG representation to compute dynamic slices. There

slicing algorithm is based on traversing the edges in the

MDG for any given slicing criteria. During MDG

traversal, DSUAM identify the relevant model parts

from architecture. Algorithm has two phase, in first

phase an MDG is constructed by extracting model

information through static analysis of the UML

structural and behavioural model. And in second phase

MDG is traversed according to the given slicing criteria

to produce desire chunk relative to condition.

Neto et al. [13] This paper characterizes and analyzes

MBT approaches from 78 technical papers. Important

issues on automation of MBT approaches that are

indicators of future trends are described. Current

deficiencies in MBT are:

• MBT approaches are usually not integrated with the

software development process. The models used for tests

generation are not integrated with artifacts from the

software development process, or were defined

exclusively by a MBT approach. Integration tools must

be used to support this problem;

• The MBT approach usually cannot represent and test

NFR’s, such as user behavior, software usability,

security and reliability. Solutions for these issues must

be provided.

• Most MBT approaches are not evaluated empirically

and not transferred to the industrial environment.

Empirical knowledge provides precise information

about costs, effort, quality and context to apply a MBT

approach. Expanding on the qualitative analysis and

providing recommendations to practitioners is proposed

for the future.

Samuel et al. [14] presented scheme to generate slice

and test case with the help of edge marking dynamic

slicing algorithm for activity diagram. They used the

flow dependency graph (FDG) which showed the

dependency among activities that arise during run time.

The proposed technique used the edge marking concept

to mark the stable and unstable edges in FDG so that they

can slice the graph according to slicing criteria from

FDG correspond to conditional predicate present at each

activity edges and can generate test case according to

them.

Mall et al. [15] presented a methodology to generate

dynamic slices and test case with the help of UML

sequence diagram. In this Message dependency graph

(MDG) gets constructed which represent every message

as node. To identify the conditional predicate associated

with message in a sequence diagram, slicer can create

dynamic slice according to the criteria. As an extension

of previous work to generate automatic test case

according to the functionality of the system at a

designing part of the SDLC, they proposed an approach

[16] to use slicing technique on the UML sequence

diagram. Sequence Diagram can capture time dependent

sequence of interaction between different object and

component. By analyzing these relation a proper

functionality of the system can be visualize which can

capture to generate test cases for better verification. This

was the way to generate test data in their proposed

approach to select conditional predicate from sequence

diagram to make a slicing criteria in the slicer while

keeping all other variable constant while traversing the

every node of sequence diagram until the solution is

found.

Kobayashi et.al [17] proposed a sequence diagram

slicing method to visualize the object oriented program

behaviour. In order to achieve this, a tool has been

proposed that name as ‘Reticella’ which is implemented

as eclipse plug-in. The proposed tool take java program

as input and after analyzing, fetch the static information

and draw B-model tree. The slicer extract a slice

according to user define slicer criteria from graph and

Drawer converts the data sequence slice into sequence

diagram with the help of Quick sequence diagram editor.

Panthi et.al [18] proposed an approach to generate test

case from UML interaction diagram by using the

condition slicing. In their approach they identified the

message guard condition from interaction diagram and

use the condition slicing to generate test cases. In the

proposed approach, they first build a message

dependency graph from UML interaction diagram and

then applied the conditional slicing on a predicate node

of the graph by considering guard conditions of message

flow as slicing criterion to compute slices and to

generate test cases.

Hyeon et.al [19] proposed an approach to address the

hierarchy and orthogonality problems while tracing the

data dependency in slicing of UML state machine

diagram. They first, constructed a control flow graph

(CFG) to track every transaction and parallel flow, and

then they created a hierarchy graph that represent a

parent-child relationship among region, state and

behaviour of state. By utilizing CFG and hierarchy graph

he have generated dependency graphs that represent the

related functionality.

Nisansala et al. [20] focused on Model Checking as fully

automated technique to reduce the size of model with the

help of slicing. They used Behaviour Tree Dependency

Graph (BTDG) to capture all functional requirements

and dependency between components and attributes.

http://www.ijesrt.com/

[Krishna, 3(10): October, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[579]

After creating the BTDG they useed the slicing criterion

which consisted of all state-realization node that updated

the state of one of the component or attributes mentioned

in the temporal logic property to reduce the parallelism

and size of model in order to improve verification time

in model checking techniques.

 Uses of Control and Data Flow System Modelling

Control and Data Flow are the most important aspect of

system modelling or UML models that describes the

nature of every component, their behaviour, and

working with other component and sequential pattern of

interaction. Many researchers dedicated their work to

slice the models and the architecture of the system into

desirable small chunks. Korel et.al [21] dedicated their

work on slicing the state based models, such as EFSMs

(Extended Finite State Machines). As a result of two

types of slicing came into existence deterministic and

non deterministic slicing. Their approach also includes a

slice reduction technique to reduce the size of a

computed EFSM slice by isolating the parts of the model

that may contribute to faulty behaviour. Their research

of slicing techniques for state machines is thoroughly

based upon control and data-flow analysis. To automate

the slice computation they proposed tool that constitute

of graphical editor, an EFSM executor and EFSM slicer.

Crest [22] defined that slicing can be carried out for

UML state machines, using data and control flow

analysis to remove element of the machine that do not

contribute to the value of a set of features in a selected

state of the machine. The proposed technique of slicing

by refactoring enables the models to be simplified and

factored on the basis of features. He also represented the

pre and post condition relationship of the state during the

path predicate coverage.

Mall et.al [23] proposed a scheme known as ‘Ctest’ that

automatically generate test cases from UML

communication diagram. According to Mall the first step

of the approach is to construct communication tree from

communication diagram on the basis of data flow and

control flow. After selecting the predicate from tree, tool

named as UTG (UML behavioral Test case Generator)

transform the predicate according to ‘CTest’ schema to

find the test data. Communication diagram has been

taken as input by tool in xml format. In this approach

Document Parser class parses the XML file for the

message name, arguments, sequence numbers and

constructs the communication tree, while Test Data

Finder uses the parsed information and finds the test data

in the form of a string

Julliand et.al [24] proposed an approach based on

domain abstraction for generating test cases on the basis

of synthetic abstraction and variable elimination with the

help of model slicing. In the proposed approach source

model is taken as input with set of abstract variable then

reduced by syntactic abstraction followed by

semantically abstraction to generate abstract model from

which symbolic tests are extracted according to selection

criteria. They proposed three methods for identifying the

relevant variable and generating abstract model. The

first one is to consider data flow dependency only.

Second one uses both data-flow and control-flow

dependency. Third method is to use data flow and partial

control flow dependencies to find as much as possible

strong relevant variables. Once the set of abstract

variable ‘Xa’ is defined the next step is to define the

Slice function that abstract the predicate P according to

‘Xa’. The core idea of the work is to use the combination

of syntactic and semantic abstraction or slicing to refine

the result more precisely while generating the test cases.

Using UML/OCL Constraints

In the MDD and MDA approaches , models become the

primary artifacts of the development process. Therefore

, assessment of the correctness of such models is a key

issue to ensure the quality of the final applications. In

that sense, this paper presents an automatic method that

uses the constraint programming paradigm to verify

UML class diagrams extended with OCL constraints. In

our approach , both class diagrams and OCL constraints

are translated into a constaint satisfaction problem.

Memon et.al [25][26] proposed a verification technique

to check the correctness of model with the help of

slicing. The proposed technique increases the scalability

of verification by partitioning the original model into

submodel. To define the binary association and

inheritance relation, dependency graph and flow graph

has been used in the proposed approach. By which

slicing can be done easily to decompose the model into

sub models with the help of dependency graph to extract

instances of models and correct component relations.

In another approach [27][28] author proposed a tool

(UOST) to enable the efficient verification of

UML/OCL Class diagram with the help of model slicing

technique. The tool can verify the properties of the

diagram with disjoint and non-disjoint sets of slicing.

Tool take the class diagram as input in XMI format with

text specified OCL constraints and break the file into

several slices with the help of model slicing technique

after parsing the file. Researcher used the eclipse solver

to translate the slices into CSP and check the existence

of solution to generate the respective object diagram for

satisfiabile and unsatisfaible sub models with their

http://www.ijesrt.com/

[Krishna, 3(10): October, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[580]

specific invariants.

Acher et al. [29] proposed an algorithm for automatic

generation of test cases from sequence diagrams. They

first transform UML sequence diagram into graphical

representation named as SDG (Sequence diagram

graph). They follow a graph based methodology with a

depth first search algorithm to traverse the SDG and to

generate test cases according to all message sequence

path coverage criteria. To retrieve the information for a

specification of input/output, pre and post conditions for

test cases generation they use the use case template, class

diagram and data dictionary and expressed in OCL.

Using Feature Based Criteria

Archer et al. [30] proposed a novel slicing technique on

the feature model by taking cross-tree constraints into

account with respect to set of features which are acting

as slicing criteria. The core idea of proposed algorithm

is to compute proposition formula representing the set of

configuration and rules and to apply propositional logic

reasoning techniques to construct an FM (representing

its hierarchy, variability information, feature groups and

cross-tree constraints).By extended the previous author

[31] also proposed the concept that how set of

complementary set of operators like aggregate, merge

and slice can provide practically and efficient support for

separation of concerns from feature modeling. They

defined that slicing process is both semantic and

syntactic so they analyze the cross-cutting constraints to

define the features that must be or cannot be sliced. In

their proposed technique, the feature model and its

cross-cutting constraints are first analyzed by

transformation into predicates and then these predicates

are transformed in a sliced feature model.

Hubaux et al. [32] proposed a slice feature diagram to

design three different views of an input diagram to

provide more flexibility to the configuration

environment. The sliced diagram does not keep the same

structure as the input diagram. The proposed approach

does not consider cross-cutting constraints and is thus

syntactic. The important property of the approach is that

it should always lead to valid configurations but the

problem can arises in the approach when features belong

to more than one view or, more generally, when the

selection of a feature in one view affect the selection of

another feature in a concurrent view.

Using Model Languages

Kim [33][34] introduced the slicing technique called

dynamic software architecture slicing (DSAS). In the

situations where a large number of ports are present and

their invocation can change the values of some variables,

or the occurrence of certain events, Kim's work is very

efficient there because it’s able to generate a smaller

number of components and connectors in each slice

according to slicing criteria. In this approach software

architecture is first designed by using ADL

(Architecture description language) and later on mapped

onto program statement as executable architecture.

Dynamic slicer takes slicing criterion as input, and reads

the ADL source code of the architecture to identify the

information of component and connector along with the

event names used in the ADL and parameter names

combined with those events. The proposed algorithm

filters out the events that are not relevant and passes only

those which are relevant to slicing criterion and generate

resulting software architecture slice as shown in Fig 2.1.

Fig 2.1 Dynamic Software Architecture Slicing

Methodology Proposed by Kim [32]

Falessi et al. [34] used the concept and technique of

model slicing to automate the safety inspection of

system. In order to achieve this, a tool named “Safe

Slicer” has been proposed that use model based slicing

to enables automatic extraction of the safety-related

slices (fragments) of design models. They proposed and

elaborate a design methodology which ensures the

traceability of links required for automated slicing. The

methodology and the slicing algorithm proposed by

these researchers are the basis for the Safe Slice tool.

Evaluation conducted by this tool indicates that the use

of design slices substantially reduces the amount of

information that needs to be inspected.

Lano et al. [35] defined the technique for slicing of UML

model using Model Transformation, particular for

restriction of model to those parts which specifies the

properties of subset within. The proposed technique use

class diagrams, individual state machines and

communicating sets of state machines to perform slicing

of UML Model. Researcher used the client-supplier

relation between different classes to form a tree

structure. According to proposed technique slicing will

be carried out upon class invariants and operation pre

and post conditions by considering the predicates P. To

slice the behaviour and communicating state machines

they define criteria’s for a slice ‘S’ of a state machine

http://www.ijesrt.com/

[Krishna, 3(10): October, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[581]

‘M’ are S <syn M, if S has fewer elements than M. S

=sem M. This means that any analysis which concerns

the value of the slice features V in the selected state s,

over all paths to this state, can be performed on the slice

S, and the result will also apply to state model M. their

techniques focused on structure-preserving and

amorphous slicing of class diagrams and state machines

by using Model transformations to perform slicing, each

transformation will satisfy the <syn and =sem relations,

resulting in a slice which also satisfies these relations

compared to the original model.

Zoltán et.al [36][37] proposed dynamic backward

slicing of model transformations technique with respect

to program slicing. To slice the models they used model

transformation language as a core of technique with the

help of Dynamic Backward slicing by considering the

Execution traces of program to generate final slice. The

proposed technique take three inputs, the model

transformation program, the model on which the MT

program operates and the slicing criterion and generate

the output as transformation slices and model slices.

Transformation of models into MT Language is done by

three consecutive processes, Graph pattern, Graph

transformation rules and control language on VIATRA2

platform. The algorithm keep the record of execution

traces during graph pattern calls and GT rules, to provide

traceability information between source and target

models and uses these traces to slice MT programs and

models simultaneously according to slicing criteria.

Model based slicing tools [41]

Table 1: List of Tools

Year Name of Tools Techniques Used

2003 EFSM Control and Data flow analysis.

 Slicing Tool

2007 UTG

Data Flow and Control

Flow

dependency, Communication

Tree

2008 SSUAM Model Dependency Graph.

2008 UML Slicer MetaModel Diagram.

2009 Reticella B-Model dependency Graph.

2011 Archlice Model Dependency Graph.

2011 Safe Slicer System Model Language,

 Traceability Links and Rules.

2012 UOST UML + OCL Constraints.

Concluding remarks and future work
From the given literature this has been listed

out that for model based slicing techniques there is use

of dependency relation, control and data flow,

UML/OCL constraints, model language are present in

literature with great emphasis on dependency relation.

Hence there is a need for such technique that can reduce

the effort of generation of dependency graph as

intermediate state. Slicing UML architectural models is

a difficult problem since the model information is

distributed across several diagrams with implicit

dependencies among them. We had to first construct an

intermediate representation called MDG by synthesizing

information present in various architectural model

elements. Such slices can be used for studying the

impact of design changes, reliability prediction,

understanding large architectures, etc. We are now

trying to enhance our intermediate model by integrating

the state and activity models into MDG to compute more

accurate slices.

References

1. Blouin, B. Combemale, B. Baudry, O.

Beaudoux, “Kompren Modeling and

Generating Model Slicers,” Journal of

Software and System Modeling, Springer,

2012.

2. Grady Booch, James Rumbaugh, Ivar

Jacobson, “The Unified Modeling Language

User Guide," 2nd Edition, May 2005,

Publisher. Addison Wesley.

3. M. Weiser, Program slicing, IEEE Transactions

on Soft. Eng., 10, July 1984, pp.352–357.

4. Jianjun Zhao, "Slicing Software Architecture,"

Technical Report 97-SE-117, pp.85-92,

Information Processing Society of Japan, Nov

1997.

5. Jianjun Zhao, “Applying slicing technique to

software architectures,” In Fourth IEEE

International Conference on Engineering of

Complex Computer Systems, ICECCS’98, pp

87 –98, 1998.

6. W. Fangjun and Y. Tong, “Dependence

Analysis for UML Class Diagrams,” J.

Electronics (China), vol. 21, no. 3, pp. 249-254,

May 2004, doi 10.1007/BF02687879.

7. H. Kagdi, J.I. Maletic, and A. Sutton, “Context-

Free Slicing of UML Class Models,” Proc. 21st

IEEE Int’l Conf. Software Maintenance, pp.

http://www.ijesrt.com/

[Krishna, 3(10): October, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[582]

635-638, 2005.

8. S. Van Langehove, “Internal Broadcasting to

Slice UML State Charts: As Rich as Needed,”

Proc. Abstracts of the FNRS Contact Day: The

Theory and Practice of Software Verification,

Oct.2005.

9. J.H. Bae, K. Lee, and H.S. Chae,

“Modularization of the UML Metamodel Using

Model Slicing,” Proc. Fifth Int’l Conf.

Information Technology: New Generations, pp.

1253-1254, 2008.

10. Sagar Sen, Naouel Moha, Benoit Baudry, and

Jean Marc Jézéquel, "Meta-model Pruning," In

12th International Conference on Model

Driven Engineering Languages and Systems

(MODELS’09), 2009.

11. Jung Ho Bae and Heung Seok Chae,

“UMLSlicer: A tool for modularizing the UML

metamodel using slicing,” In 8th IEEE

International Conference on Computer and

Information Technology (CIT), pp.772–777,

2008

12. Jaiprakash T. Lallchandani, R. Mall, "Static

Slicing of UML Architectural Models," Journal

of Object Technology, vol. 8, no. 1, pp. 159-

188, January-February 2009

13. Arilo C. Dias Neto, Rajesh Subramanyan,

Marlon Vieira, Guilherme H. Travasso “A

Survey on Model-based Testing Approaches: A

Systematic Review”.

14. J. Lallchandani and R. Mall, “Slicing UML

Architectural Models,” ACM SIGSOFT,

vol.33, no.3, May 2008.

15. J. Lallchandani and R. Mall, “A Dynamic

Slicing Technique for UML Architectural

Models,” IEEE Transaction on Software

Engineering, Vol. 37, No. 6, NOV/DEC 2011.

16. Philip Samuel, Rajib Mall, “Slicing-Based Test

Case Generation from UML Activity

Diagrams,” ACM SIGSOFT Software

Engineering Notes, Vol. 34 No. 6, November

2009.

17. Philip Samuel, Rajib Mall, “A Novel Test Case

Design Technique Using Dynamic Slicing of

UML Sequence Diagrams,” e-Informatics

Software Engineering Journal, Vol. 2, Issue 1,

2008.

18. Ranjita Kumari Swain , Vikas Panthi, Prafulla

Kumar Behera, “Test Case Design Using

Slicing of UML Interaction Diagram,” 2nd

International Conference on communication,

computing and security, vol.6 , pp.136-144,

ELSEVIR, 2012.

19. Hyeon-Jeong Kim , Doo-Hwan Bae, Vidroha

Debroy, W. Eric Wong, “Deriving Data

Dependence from UML State Machine

Diagrams,” Fifth International Conference on

Secure Software Integration and Reliability

Improvement (IEEE), 2011.

20. Nisansala Yatapanage, KirstenWinter, and

Saad Zafar, “Slicing behavior tree models for

verification,” In IFIP Advances in Information

and Communication Technology, Vol. 323, pp.

125–139, 2010.

21. B. Korel, I. Singh, L. Tahat, and B. Vaysburg,

“Slicing of State Based Models,” Proc. Int’l

Conf. Software Maintenance, pp. 34-43, 2003.

22. Kevin Lano Crest, “Slicing of UML State

Machines,” Proceedings of the 9th WSEAS

International Conference on APPLIED

INFORMATICS AND COMMUNICATIONS

(AIC '09), 2009.

23. Philip Samuel , Rajib Mall, Pratyush Kanth,

“Automatic test case generation from UML

communication diagrams,” Information and

Software Technology (ELSEVIER), 2007.

24. J. Julliand, N. Stouls, P-C. Bue, P-A. Masson,

“B model slicing and predicate abstraction to

generate tests,” Software Quality Journal, vol.

21, pp.127-158, 2013.

25. Asadullah Shaikh, Robert Clarisó, Uffe Kock

Wiil, and Nasrullah Memon, “Verification-

driven slicing of UML/OCL models,” In

Proceedings of the IEEE/ACM international

conference on Automated software

engineering, pp. 185–194, ACM, 2010.

26. Asadullah Shaikh, Uffe Kock Wiil, and

Nasrullah Memon, "UOST: UML/OCL

aggressive slicing technique for efficient

verification of models," In System Analysis

and Modeling: About Models, 6th International

Workshop SAM’10, pp. 173–192, 2010.

27. Asadullah Shaikh, Uffe Kock Wiil, and

Nasrullah Memon, "Evaluation of tools and

slicing techniques for efficient verification of

UML/OCL class diagrams," Advances in

Software Engineering, vol.18, pp 173-192,

2011.

28. Monalisa Sarma, Debasish Kundu, Rajib

Mall, “Automatic Test Case Generation from

UML Sequence Diagrams,” 15th IEEE

International Conference on Advanced

Computing and Communications, 2007.

29. Mathieu Acher, Philippe Collet, Philippe

Lahire, and Robert France, “Slicing feature

models,” In 26th

30. Mathieu Acher, Philippe Collet, Philippe

Lahire, and Robert France, “Separation of

http://www.ijesrt.com/

[Krishna, 3(10): October, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology
[583]

Concerns in Feature Modeling: Support and

Applications,” In Aspect-Oriented Software

Development(AOSD’12), ACM

31. Press, 2012. T. Kim, Y.-T. Song, L. Chung,

and D.T. Huynh, “Dynamic Software

Architecture Slicing,” Proc. 23rd Int’l

Computer Software and Applications Conf.,

pp. 61-66, 1999.

32. Arnaud Hubaux, Patrick Heymans, Pierre-Yves

Schobbens, Ebrahim Khalil Abbasi, and Dirk

Deridder, “Supporting multiple perspectives in

feature-based configuration,” Software and

Systems Modeling, 2012.

33. T. Kim, Y.-T. Song, L. Chung, and D.T.

Huynh,“Software Architecture Analysis: A

Dynamic Slicing Approach,” J. Computer and

Information Science, vol. 1, no. 2, pp. 91-103,

2000. .

34. Davide Falessi, Shiva Nejati, Mehrdad

Sabetzadeh, Lionel Briand, and Antonio

Messina, “SafeSlice: a model slicing and

design safety inspection tool for SysML,” In

SIGSOFT/FSE’11 19th ACM SIGSOFT

Symposium on the Foundations of Software

Engineering (FSE-19) and ESEC’11: 13rd

European Software Engineering Conference

(ESEC-13), ACM, 2011.

35. Kevin Lano and Shekoufeh K. Rahimi, “Slicing

of UML Models Using Model

Transformations,” Model Driven Engineering

Languages and Systems, 13th International

Conference, MODELS 2010, Oslo, Norway,

October 3-8, 2010, Lecture Notes of Computer

Science, Vol. 6395, pp. 228-242, Springer,

2010.

36. Zoltán Ujhelyi, Ákos Horváth, and Dániel

Varró, “Towards dynamic backward slicing

of model transformations,” In 26th

IEEE/ACM International Conference on

Automated Software Engineering (ASE 2011),

pp.404–407, IEEE Computer Society, 2011.

37. Zoltán Ujhelyi, Ákos Horváth, and Dániel

Varró, “Dynamic Backward Slicing of Model

Transformations,” IEEE Fifth International

Conference on Software Testing, Verification

and Validation, 2012.

38. R. Singh, Vinay Arora,”Literature analysis on

model based slicing” International Journal of

Computer Applications (0975 – 8887)

http://www.ijesrt.com/

